# Algebra Formula Bank

0
4908

This is Algebra Formula Bank. So this Algebra Formula Bank provides all kinds of formula related to Algebra. Hope students find it useful.

#### Algebra Formula Bank

Here we give algebra formulas in different categories. Letâ€™s see them one by one.

#### Square formula in Algebra

• a2Â â€“ b2Â = (a â€“ b)(a + b)
• (a + b)2Â = a2Â + 2ab + b2
• a2Â + b2Â = (a â€“ b)2Â + 2ab
• (a â€“ b)2Â = a2Â â€“ 2ab + b2Â Â Â
• a2Â + b2Â = (a + b)2Â – 2ab

#### << Algebra Formula Collection>> See in Detailâ€¦â€¦â€¦â€¦â€¦â€¦â€¦

These are very basic and important formula in Algebra. Though these formulas are basic but they are very important while solving the problems in Algebra.

#### Square of Three Terms

• (a + b + c)2Â = a2Â + b2Â + c2Â + 2ab + 2ac + 2bc
• (a â€“ b â€“ c)2Â = a2Â + b2Â + c2Â â€“ 2ab â€“ 2ac + 2bc

#### << Collection of Formula in Trigonometry>> Read More â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦

The next important category of formula in Algebra is cubic formula. So in this Algebra Formula Bank now we present the formula for cube.

• (a + b)3Â = a3Â + 3a2b + 3ab2Â + b3Â ; (a + b)3Â = a3Â + b3Â + 3ab(a + b)
• (a â€“ b)3Â = a3Â â€“ 3a2b + 3ab2Â â€“ b3
• a3Â â€“ b3Â = (a â€“ b)(a2Â + ab + b2)
• a3Â + b3Â = (a + b)(a2Â â€“ ab + b2)
• (a + b)3Â = a3Â + 3a2b + 3ab2Â + b3
• (a â€“ b)3Â = a3Â â€“ 3a2b + 3ab2Â â€“ b3

#### Some additional formula in the Algebra

These formulas have no frequent use in school level. However we use them in university level very much.

• (a + b)4Â = a4Â + 4a3b + 6a2b2Â + 4ab3Â + b4)
• (a â€“ b)4Â = a4Â â€“ 4a3b + 6a2b2Â â€“ 4ab3Â + b4)
• a4Â â€“ b4Â = (a â€“ b)(a + b)(a2Â + b2)
• a5Â â€“ b5Â = (a â€“ b)(a4Â + a3b + a2b2Â + ab3Â + b4)

#### Algebra Formula Collection for advance level

• If n is a natural number, anÂ â€“ bnÂ = (a â€“ b)(an-1Â + an-2b+â€¦+ bn-2a + bn-1)
• If n is evenÂ (n = 2k), anÂ + bnÂ = (a + b)(an-1Â â€“ an-2b +â€¦+ bn-2a â€“ bn-1)
• If n is oddÂ (n = 2k + 1), anÂ + bnÂ = (a + b)(an-1Â â€“ an-2b +â€¦- bn-2a + bn-1)
• (a + b + c + â€¦)2Â = a2Â + b2Â + c2Â + â€¦ + 2(ab + ac + bc + â€¦.

#### Laws of Indices

• Laws of Exponents
(am)(an) = am+n
(ab)mÂ = ambm
(am)nÂ = amn
• Fractional Exponents
a0Â = 1

In this expression the base a itself can never be zero.

Please give constructive suggest for the Algebra Formula Bank if you have any.